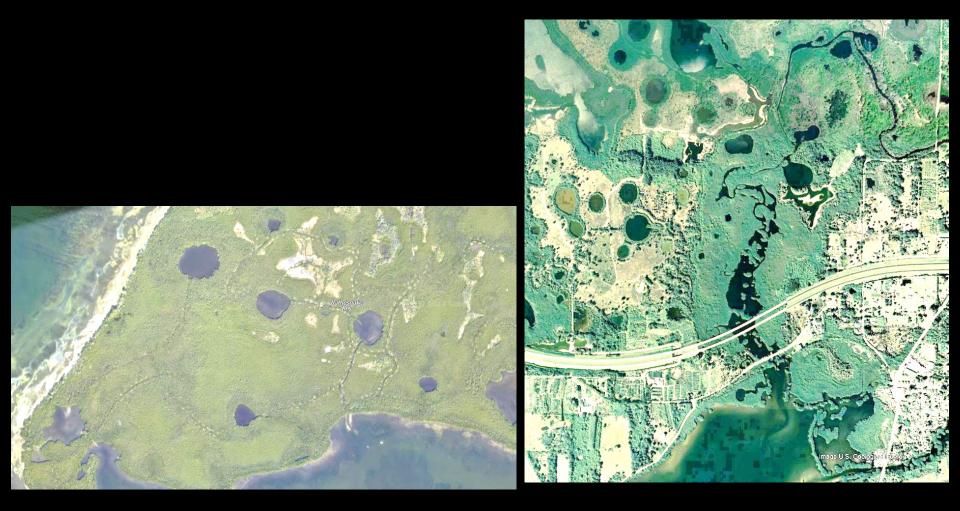

Including hydroecological connections at the land-sea interface in conservation of sportfish habitat

Philip Stevens, Courtney Saari, David Blewett, Eric Weather, and Corey Anderson


Florida's coastal morphology

Examples: Northern Florida

Examples: Tampa Bay

Examples: Charlotte Harbor

Examples: Coastal Everglades

Creeks and ponds – juvenile snook and tarpon

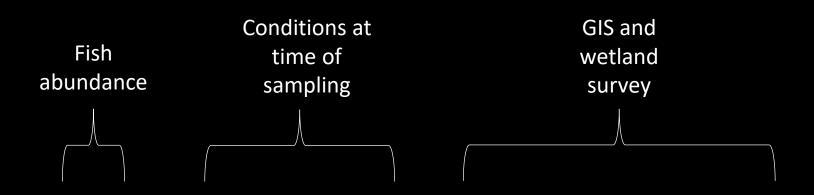
A new approach to define an economically important fish as an umbrella flagship species to enhance collaborative stakeholder-management agency habitat conservation

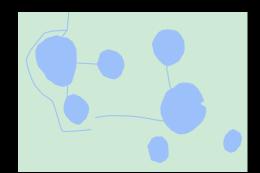
JoEllen K. Wilson[®] · Philip W. Stevens[®] · David A. Blewett · Ross Boucek[®] · Aaron J. Adams[®]

Coastal ponds and creeks sampled in RESTORE fisheries study (2019 – 2022)

Context, Geomorphology, Connectivity

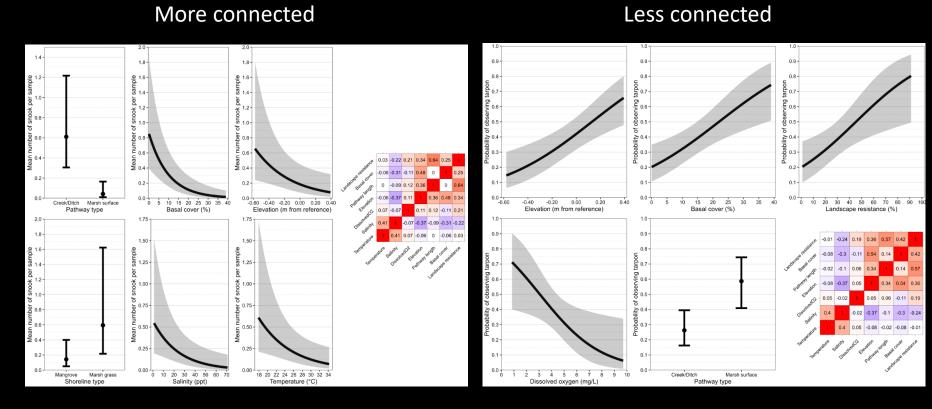
FWRI Wetlands Group

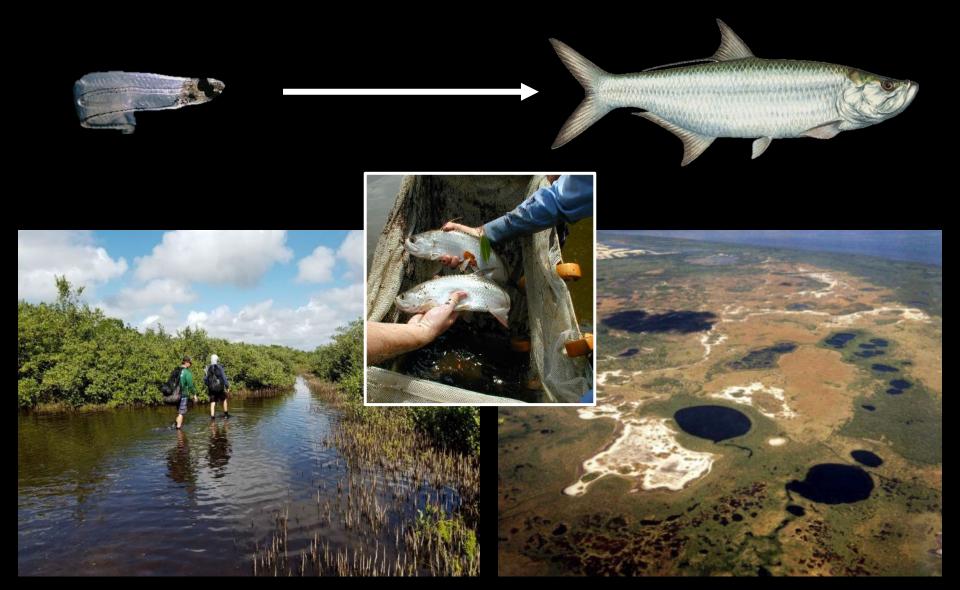

Elevations

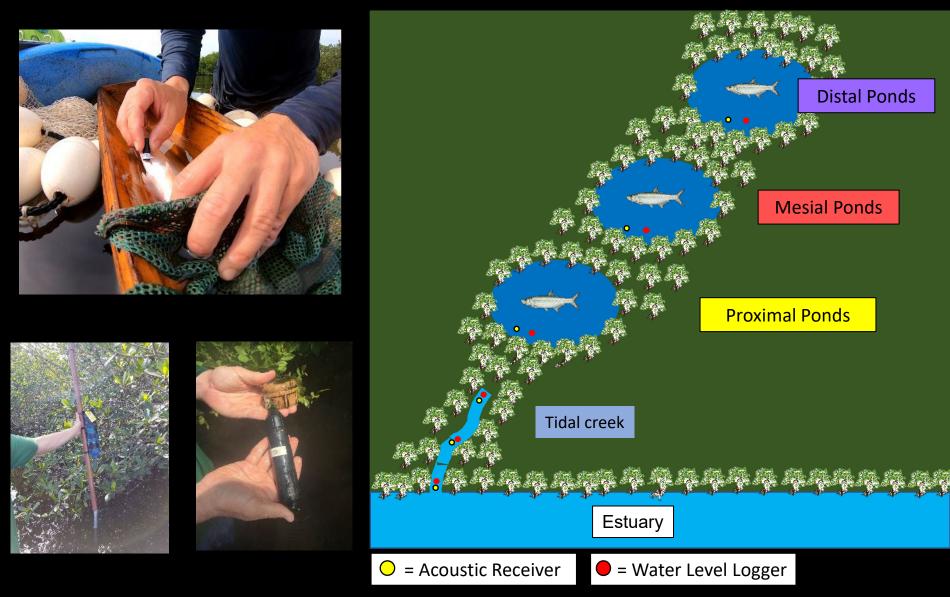

Landscape Resistance

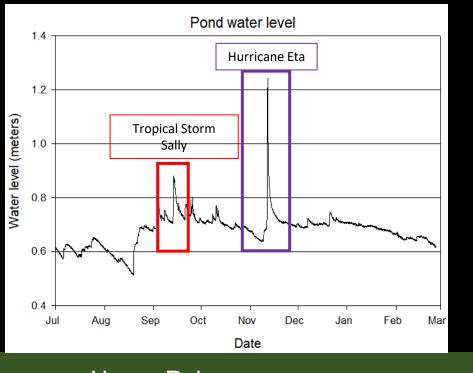
Added columns in the dataset

	Fish		Habitat					Context and Geomorphology		Connectivity				
Coastal Pond	Snook abundance (average)	Tarpon presence (1) or absence (0)	Water depth (m)	Temperature (deg C)	Salinity (ppt)	Dissolved oxygen (mg/L)	Shore type	Pathway length (m)	Pond size (m)	Pathway type	Elevation (m)	Canopy cover (%)	Basal cover (%)	Landscape resistance (%)
C1	12.1 (5.0)	0,0,0,0,1,0	0.6 (0.06)	23.9 (0.8)	29.8 (2.5)	4.3 (0.3)	Marsh grass	665	15	Creek/Ditch	-0.414	81.0	0.0	1.0
C2	3.9 (2.0)	0,0,0,0,0,0	0.4 (0.04)	24.4 (0.8)	30.9 (2.6)	4.2 (0.4)	Marsh grass	595	15	Creek/Ditch	-0.414	81.0	0.0	1.0
C3	7.7 (3.3)	0,0,0,0,0,0	0.4 (0.05)	25.9 (0.9)	31.1 (2.6)	5.0 (0.3)	Marsh grass	434	15	Creek/Ditch	-0.414	81.0	0.0	1.0
C4	8.8 (3.2)	0,0,0,0,0,0	0.6 (0.09)	26.9 (0.8)	30.7 (2.4)	5.7 (0.3)	Marsh grass	279	15	Creek/Ditch	-0.414	81.0	0.0	1.0
C5	12.7 (3.5)	0,0,0,0,0,0	0.8 (0.08)	26.9 (0.9)	31.5 (2.2)	5.2 (0.2)	Marsh grass	372	15	Creek/Ditch	-0.414	81.0	0.0	1.0
C6	6.6 (3.0)	0,0,0,0,0,0	0.8 (0.08)	27.1 (0.9)	31.6 (2.3)	5.8 (0.3)	Marsh grass	542	15	Creek/Ditch	-0.414	81.0	0.0	1.0
C9	0	0,0,1,0,1,0	0.6 (0.05)	25.7 (0.8)	10.9 (2.8)	5.7 (0.5)	Mangrove	699	79	Creek/Ditch	-0.381	96.6	39.0	70.0
F1	7.2 (3.2)	0,0,0,0,0,0	0.3 (0.02)	24.7 (0.9)	37.7 (4.7)	4.1 (0.4)	Mangrove	1646	83	Creek/Ditch	-0.418	82.8	12.0	12.0
F2	3.9 (2.0)	1,0,0,0,1,0	0.5 (0.03)	25.3 (0.9)	37.1 (4.4)	4.1 (0.4)	Mangrove	1469	79	Creek/Ditch	-0.397	97.4	21.0	44.0
F3	8.3 (7.7)	1,0,1,1,1,1	0.6 (0.03)	25.7 (0.8)	38.3 (3.4)	3.6 (0.3)	Mangrove	1047	68	Creek/Ditch	-0.579	98.2	3.0	31.0
F4	0	1,0,1,1,1,0	0.5 (0.05)	26.3 (1.1)	13.7 (1.3)	4.2 (0.4)	Mangrove	1240	82	Marsh surface	0.393	88.5	32.6	27.4
F5	0.6 (0.6)	1,0,0,1,1,0	0.6 (0.05)	24.7 (0.8)	20.8 (1.4)	4.1 (0.4)	Mangrove	920	108	Marsh surface	0.288	90.9	20.8	28.4
F6	4.0 (2.8)	0,0,0,1,0,0	0.4 (0.03)	25.2 (0.6)	19.6 (0.8)	5.6 (0.2)	Mangrove	1070	186	Marsh surface	0.288	90.9	20.8	28.4
F7	10.5 (6.7)	1,1,1,1,1,1	0.3 (0.02)	23.9 (1.2)	38.0 (4.3)	4.9 (0.3)	Mangrove	340	57	Marsh surface	0.273	90.9	20.8	28.4
W2	0	0,0,1,1,0,1	0.4 (0.03)	24.5 (0.8)	6.3 (0.3)	6.2 (0.4)	Mangrove	1830	62	Marsh surface	0.385	94.5	8.4	43.8
W3	0	0,0,1,1,1,1	0.7 (0.05)	25.4 (0.8)	17.5 (1.2)	4.4 (0.5)	Mangrove	800	107	Marsh surface	0.218	91.9	28.3	43.2
W4	34.7 (10.8)	1,0,0,1,0,1	0.6 (0.02)	26.6 (0.6)	29.3 (1.6)	6.4 (0.2)	Mangrove	2138	281	Creek/Ditch	0.035	98.2	0.0	91.0
W5	17.2 (9.5)	0,0,1,1,0,1	0.7 (0.03)	25.8 (0.6)	33.7 (2.0)	5.4 (0.2)	Mangrove	1208	238	Creek/Ditch	0.035	92.7	16.0	11.0
W6	22.0 (15.8)	1,0,1,1,1,1	0.7 (0.03)	25.3 (0.7)	33.5 (2.7)	3.8 (0.3)	Mangrove	1524	84	Creek/Ditch	0.035	92.7	16.0	11.0






Less connected



Now that the fish are here.... How exactly do they get out?

Study design

Matt Bunting **UF Masters Student**

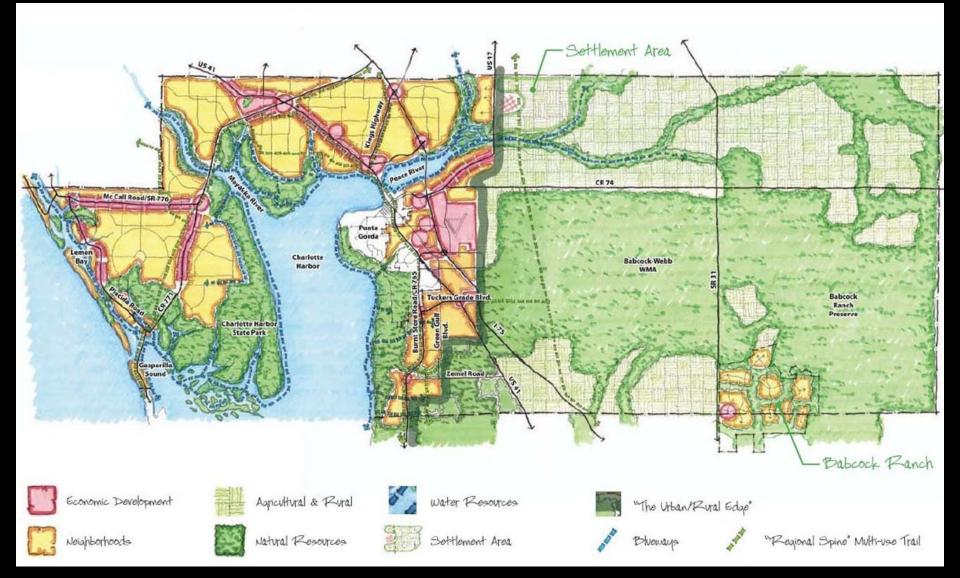
High Tides and Storm Surge

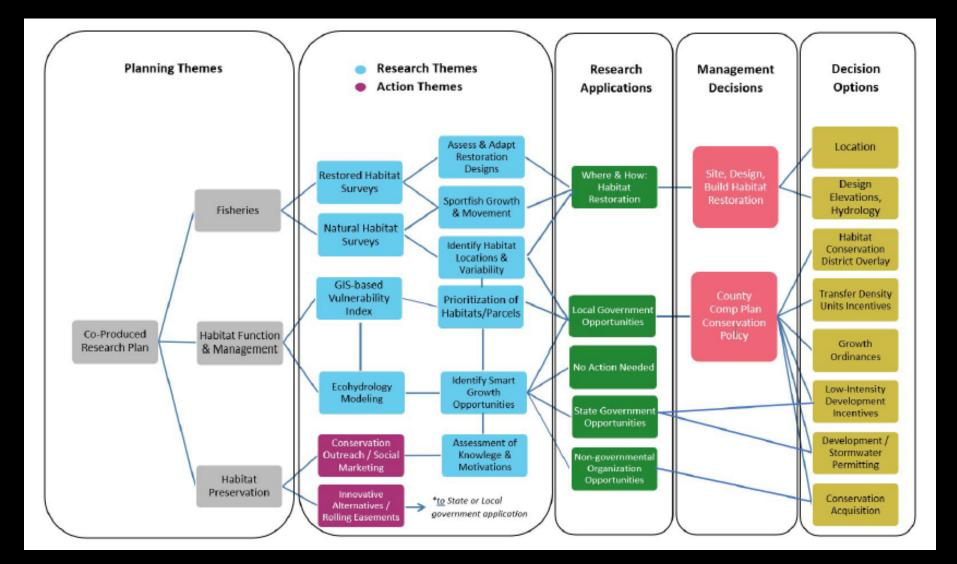
How to conserve coastal ponds – Juvenile snook and tarpon habitat

Who are the "managers"?

Land use planning

Stormwater infrastructure




NOAA RESTORE Grant: Planning for Actionable Science

2050 Charlotte County Land Use

Planning meetings with managers and scientists

A Co-Produced Research Plan (5 yrs)

Final Report

Knowledge Co-Production for Place-Based Recreational Fishery Conservation in Charlotte Harbor, Florida: A Research and Application Plan

Photo Credit: Sportfish habitata, Charlotte County, FL | Coney Anderson/PWC

Prepared by: Janicki Environmental, Inc.

August 2022

Fish Sampling

Completed

Lemon Creek

Wildflower

Preserve

Ponds sampled with 9 m seine for fish community structure, plus 3 creeks downstream (2019-2022, RESTORE funding)

Developments being planned

Tidal creeks sampled monthly with 21 m seine for fish community structure (2016-present, FWC funded)
Telemetry studies (2019-2022, FWC funded)

Developments being planned

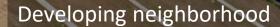
Proposed

Ponds to be sampled with sport fish seine that targets juvenile snook and tarpon (goal: sample at least half of the ponds identified)

Ponds to be sampled with sport fish seine and 9 m seine for fish community structure (goal: multiyear sampling to determine trends)

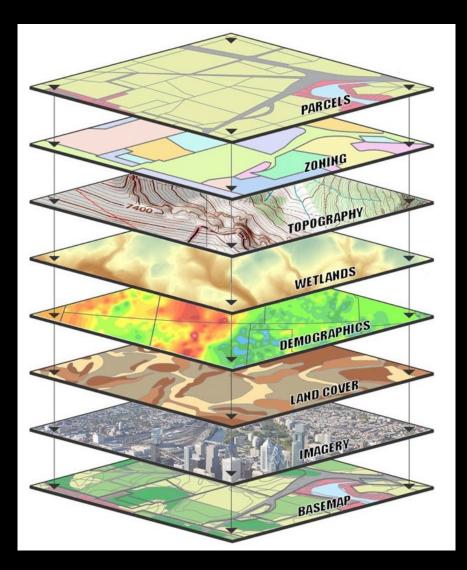
> Telemetry studies (goal: define environmental conditions that allow for sport fish emigration)

Hydrologic Modeling


Snook and

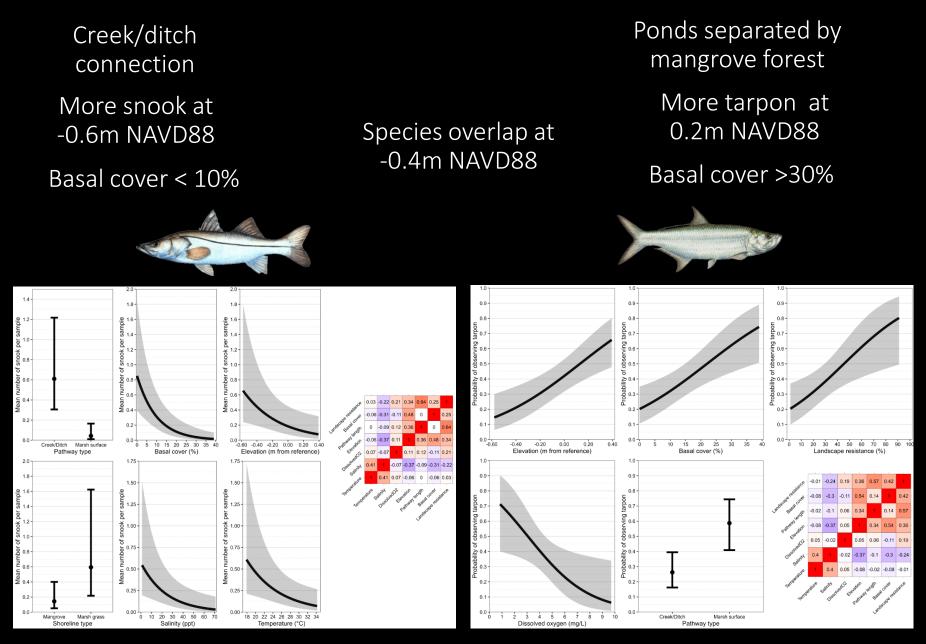
Tarpon nurseries

Fish emigrate over marsh to open estuary during flood events


Need sheetflow to maintain good conditions and water levels in ponds

Habitat prone to eutrophication

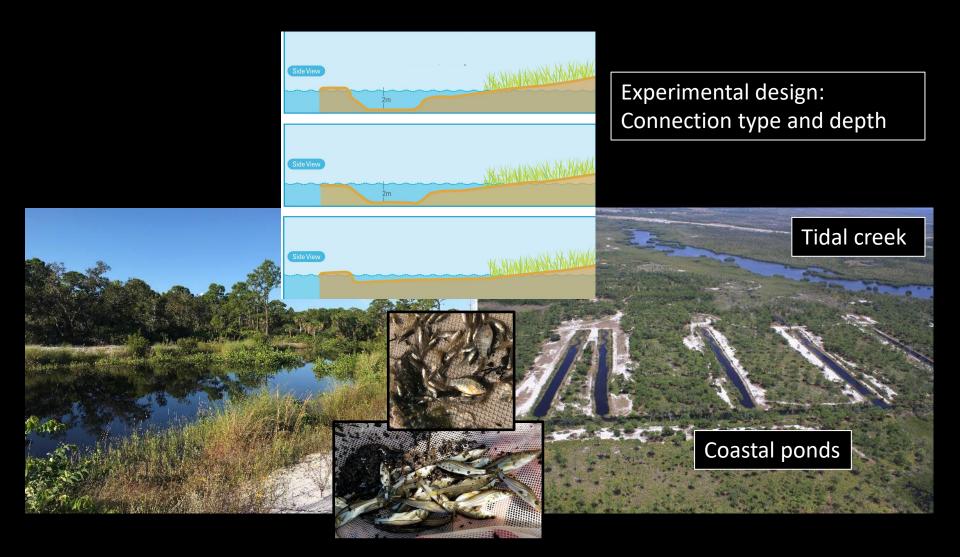
GIS Tools – Identify Conservation Opportunities



Work also informs: Knowledge co-production for restoration

- Characterize what Biologists know in terms for Engineers
- Develop general design models based on reference habitats

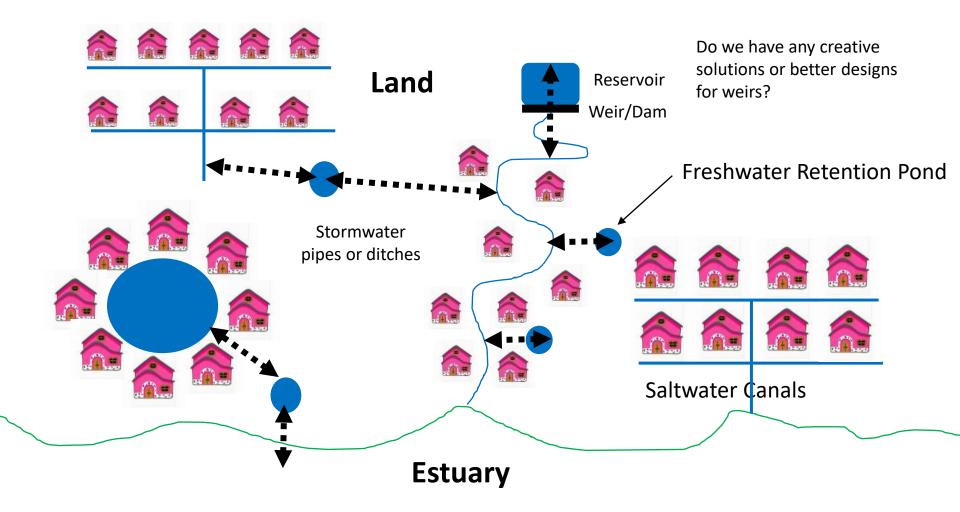
Acquire the engineering specs


Robinson Preserve Expansion Restoration

Lemon Creek Wildflower Preserve

Charlotte Harbor Preserve State Park: Coral Creek

Including hydroecological connections at the landsea interface in conservation of sportfish habitat



Slides for questions

Planning for the future... Nurseries in an urban landscape?

